Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(2): 212-222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622091

RESUMO

Quinone derivatives of triphenylphosphonium have proven themselves to be effective geroprotectors and antioxidants that prevent oxidation of cell components with participation of active free radicals - peroxide (RO2·), alkoxy (RO·), and alkyl (R·) radicals, as well as reactive oxygen species (superoxide anion, singlet oxygen). Their most studied representatives are derivatives of plastoquinone (SkQ1) and ubiquinone (MitoQ), which in addition to antioxidant properties also have a strong antibacterial effect. In this study, we investigated antibacterial properties of other quinone derivatives based on decyltriphenylphosphonium (SkQ3, SkQT, and SkQThy). We have shown that they, just like SkQ1, inhibit growth of various Gram-positive bacteria at micromolar concentrations, while being less effective against Gram-negative bacteria, which is associated with recognition of the triphenylphosphonium derivatives by the main multidrug resistance (MDR) pump of Gram-negative bacteria, AcrAB-TolC. Antibacterial action of SkQ1 itself was found to be dependent on the number of bacterial cells. It is important to note that the cytotoxic effect of SkQ1 on mammalian cells was observed at higher concentrations than the antibacterial action, which can be explained by (i) the presence of a large number of membrane organelles, (ii) lower membrane potential, (iii) spatial separation of the processes of energy generation and transport, and (iv) differences in the composition of MDR pumps. Differences in the cytotoxic effects on different types of eukaryotic cells may be associated with the degree of membrane organelle development, energy status of the cell, and level of the MDR pump expression.


Assuntos
Antineoplásicos , Benzoquinonas , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Antioxidantes/farmacologia , Compostos Organofosforados/farmacologia , Plastoquinona/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Antineoplásicos/farmacologia , Mamíferos/metabolismo
2.
ISME J ; 17(11): 1979-1992, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37679430

RESUMO

Algae and bacteria have complex and intimate interactions in the ocean. Besides mutualism, bacteria have evolved a variety of molecular-based anti-algal strategies. However, limited by the unknown mechanism of synthesis and action of these molecules, these strategies and their global prevalence remain unknown. Here we identify a novel strategy through which a marine representative of the Gammaproteobacteria produced 3,3',5,5'-tetrabromo-2,2'-biphenyldiol (4-BP), that kills or inhibits diverse phytoplankton by inhibiting plastoquinone synthesis and its effect cascades to many other key metabolic processes of the algae. Through comparative genomic analysis between the 4-BP-producing bacterium and its algicidally inactive mutant, combined with gene function verification, we identified the gene cluster responsible for 4-BP synthesis, which contains genes encoding chorismate lyase, flavin-dependent halogenase and cytochrome P450. We demonstrated that in near in situ simulated algal blooming seawater, even low concentrations of 4-BP can cause changes in overall phytoplankton community structure with a decline in dinoflagellates and diatoms. Further analyses of the gene sequences from the Tara Oceans expeditions and 2750 whole genome sequences confirmed the ubiquitous presence of 4-BP synthetic genes in diverse bacterial members in the global ocean, suggesting that it is a bacterial tool potentially widely used in global oceans to mediate bacteria-algae antagonistic relationships.


Assuntos
Bactérias , Plastoquinona , Plastoquinona/metabolismo , Plastoquinona/farmacologia , Bactérias/genética , Bactérias/metabolismo , Oceanos e Mares , Água do Mar/microbiologia , Fitoplâncton/metabolismo
3.
Sci Rep ; 13(1): 4326, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922552

RESUMO

The response to stress involves the activation of pathways leading either to protection from the stress origin, eventually resulting in development of stress resistance, or activation of the rapid death of the organism. Here we hypothesize that mitochondrial reactive oxygen species (mtROS) play a key role in stress-induced programmed death of the organism, which we called "phenoptosis" in 1997. We demonstrate that the synthetic mitochondria-targeted antioxidant SkQ1 (which specifically abolishes mtROS) prevents rapid death of mice caused by four mechanistically very different shocks: (a) bacterial lipopolysaccharide (LPS) shock, (b) shock in response to intravenous mitochondrial injection, (c) cold shock, and (d) toxic shock caused by the penetrating cation C12TPP. Importantly, under all these stresses mortality was associated with a strong elevation of the levels of pro-inflammatory cytokines and administration of SkQ1 was able to switch off the cytokine storms. Since the main effect of SkQ1 is the neutralization of mtROS, this study provides evidence for the role of mtROS in the activation of innate immune responses mediating stress-induced death of the organism. We propose that SkQ1 may be used clinically to support patients in critical conditions, such as septic shock, extensive trauma, cooling, and severe infection by bacteria or viruses.


Assuntos
Antioxidantes , Mitocôndrias , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Mitocôndrias/metabolismo , Citocinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plastoquinona/farmacologia , Plastoquinona/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835320

RESUMO

The purpose of this study is to test the effects of whole-body animal exposure to airborne particulate matter (PM) with an aerodynamic diameter of <10 µm (PM10) in the mouse cornea and in vitro. C57BL/6 mice were exposed to control or 500 µg/m3 PM10 for 2 weeks. In vivo, reduced glutathione (GSH) and malondialdehyde (MDA) were analyzed. RT-PCR and ELISA evaluated levels of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling and inflammatory markers. SKQ1, a novel mitochondrial antioxidant, was applied topically and GSH, MDA and Nrf2 levels were tested. In vitro, cells were treated with PM10 ± SKQ1 and cell viability, MDA, mitochondrial ROS, ATP and Nrf2 protein were tested. In vivo, PM10 vs. control exposure significantly reduced GSH, corneal thickness and increased MDA levels. PM10-exposed corneas showed significantly higher mRNA levels for downstream targets, pro-inflammatory molecules and reduced Nrf2 protein. In PM10-exposed corneas, SKQ1 restored GSH and Nrf2 levels and lowered MDA. In vitro, PM10 reduced cell viability, Nrf2 protein, and ATP, and increased MDA, and mitochondrial ROS; while SKQ1 reversed these effects. Whole-body PM10 exposure triggers oxidative stress, disrupting the Nrf2 pathway. SKQ1 reverses these deleterious effects in vivo and in vitro, suggesting applicability to humans.


Assuntos
Antioxidantes , Córnea , Exposição Ambiental , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Material Particulado , Plastoquinona , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Antioxidantes/farmacologia , Córnea/efeitos dos fármacos , Córnea/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Material Particulado/antagonistas & inibidores , Material Particulado/toxicidade , Plastoquinona/farmacologia
5.
Biochemistry (Mosc) ; 87(10): 1098-1108, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36273878

RESUMO

Light-dependent hydrogen production by microalgae attracts attention of researchers because of the potential practical application. It is generally recognized that Calvin-Benson-Bassham cycle competes with hydrogen production process for electrons, and substrate (CO2) limitation of the cycle can increase hydrogen production rate. Furthermore, photosystem II is not destroyed by CO2 deficiency. We studied photoautotrophic cultures of Chlamydomonas reimhardtii under CO2 deficiency. Under the flow of air with removed CO2 the cultures reached stationary phase of growth and the photosystem II was downregulated due to overreduction of plastoquinone pool followed by degradation of the entire photosynthetic machinery. Under the Ar flow in the absence of CO2 the cultures were brought to microaerobic conditions producing small amounts of hydrogen (5 ml H2 day-1 liter-1 culture). Similar to the case of incubation under air atmosphere, prolonged incubation of cultures under microaerobic conditions resulted in down-regulation of photosystem II due to overreduction of plastoquinone pool with following degradation of whole photosynthetic machinery. Following removal of CO2, transfer of cultures into dark anaerobic conditions (2.5 h), and illumination with low-intensity light resulted in the cultures producing H2 with high initial rate. Total microalgal hydrogen production under these conditions was 56 ml H2 liter-1 culture. Thus, the CO2-deprived photoautotrophic cultures produce hydrogen. Hydrogen production was limited by the toxic effect of oxygen on hydrogenase but not by the Calvin-Benson-Bassham cycle competition with hydrogen production process.


Assuntos
Chlamydomonas reinhardtii , Hidrogenase , Chlamydomonas reinhardtii/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Dióxido de Carbono/metabolismo , Hidrogenase/metabolismo , Hidrogenase/farmacologia , Plastoquinona/farmacologia , Enxofre/metabolismo , Enxofre/farmacologia , Fotossíntese/fisiologia , Hidrogênio , Oxigênio/metabolismo
6.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163053

RESUMO

Astrocytes and microglia are the first cells to react to neurodegeneration, e.g., in Alzheimer's disease (AD); however, the data on changes in glial support during the most common (sporadic) type of the disease are sparse. Using senescence-accelerated OXYS rats, which simulate key characteristics of sporadic AD, and Wistar rats (parental normal strain, control), we investigated hippocampal neurogenesis and glial changes during AD-like pathology. Using immunohistochemistry, we showed that the early stage of the pathology is accompanied by a lower intensity of neurogenesis and decreased astrocyte density in the dentate gyrus. The progressive stage is concurrent with reactive astrogliosis and microglia activation, as confirmed by increased cell densities and by the acquisition of cell-specific gene expression profiles, according to transcriptome sequencing data. Besides, here, we continued to analyze the anti-AD effects of prolonged supplementation with mitochondria-targeted antioxidant SkQ1. The antioxidant did not affect neurogenesis, partly normalized the gene expression profile of astrocytes and microglia, and shifted the resting/activated microglia ratio toward a decrease in the activated-cell density. In summary, both astrocytes and microglia are more vulnerable to AD-associated neurodegeneration in the CA3 area than in other hippocampal areas; SkQ1 had an anti-inflammatory effect and is a promising modality for AD prevention and treatment.


Assuntos
Doença de Alzheimer/dietoterapia , Doença de Alzheimer/patologia , Giro Denteado/patologia , Plastoquinona/análogos & derivados , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Animais , Astrócitos/química , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Giro Denteado/química , Giro Denteado/efeitos dos fármacos , Suplementos Nutricionais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Plastoquinona/administração & dosagem , Plastoquinona/farmacologia , Ratos , Ratos Wistar
7.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163957

RESUMO

Plants have paved the way for the attainment of molecules with a wide-range of biological activities. However, plant products occasionally show low biological activities and/or poor pharmacokinetic properties. In that case, development of their derivatives as drugs from the plant world has been actively performed. As plant products, plastoquinones (PQs) have been of high importance in anticancer drug design and discovery; we have previously evaluated and reported the potential cytotoxic effects of a series of PQ analogs. Among these analogs, PQ2, PQ3 and PQ10 were selected for National Cancer Institute (NCI) for in vitro screening of anticancer activity against a wide range of cancer cell lines. The apparent superior anticancer potency of PQ2 on the HCT-116 colorectal cancer cell line than that of PQ3 and PQ10 compared to other tested cell lines has encouraged us to perform further mechanistic studies to enlighten the mode of anti-colorectal cancer action of PQ2. For this purpose, its apoptotic effects on the HCT-116 cell line, DNA binding capacity and several crucial pharmacokinetic properties were investigated. Initially, MTT assay was conducted for PQ2 at different concentrations against HCT-116 cells. Results indicated that PQ2 exhibited significant cytotoxicity in HCT-116 cells with an IC50 value of 4.97 ± 1.93 µM compared to cisplatin (IC50 = 26.65 ± 7.85 µM). Moreover, apoptotic effects of PQ2 on HCT-116 cells were investigated by the annexin V/ethidium homodimer III staining method and PQ2 significantly induced apoptosis in HCT-116 cells compared to cisplatin. Based on the potent DNA cleavage capacity of PQ2, molecular docking studies were conducted in the minor groove of the double helix of DNA and PQ2 presented a key hydrogen bonding through its methoxy moiety. Overall, both in vitro and in silico studies indicated that effective, orally bioavailable drug-like PQ2 attracted attention for colorectal cancer treatment. The most important point to emerge from this study is that appropriate derivatization of a plant product leads to unique biologically active compounds.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Plastoquinona/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Simulação por Computador , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Plastoquinona/metabolismo , Relação Estrutura-Atividade
8.
Life Sci ; 288: 120174, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826439

RESUMO

AIMS: FcεRI-dependent activation and degranulation of mast cells (MC) play an important role in allergic diseases. We have previously demonstrated that triphenylphosphonium (TPP)-based antioxidant SkQ1 inhibits mast cell degranulation, but the exact mechanism of this inhibition is still unknown. This study focused on investigating the influence of TPP-based compounds SkQ1 and C12TPP on FcεRI-dependent mitochondrial dysfunction and signaling during MC degranulation. MAIN METHODS: MC were sensitized by anti-dinitrophenyl IgE and stimulated by BSA-conjugated dinitrophenyl. The degranulation of MC was estimated by ß-hexosaminidase release. The effect of TPP-based compounds on FcεRI-dependent signaling was determined by Western blot analysis for adapter molecule LAT, kinases Syk, PI3K, Erk1/2, and p38. Fluorescent microscopy was used to evaluate mitochondrial parameters such as morphology, membrane potential, reactive oxygen species and ATP level. KEY FINDINGS: Pretreatment with TPP-based compounds significantly decreased FcεRI-dependent degranulation of MC. TPP-based compounds also prevented mitochondrial dysfunction (drop in mitochondrial ATP level and mitochondrial fission), and decreased Erk1/2 kinase phosphorylation. Selective Erk1/2 inhibition by U0126 also reduced ß-hexosaminidase release and prevented mitochondrial fragmentation during FcεRI-dependent degranulation of MC. SIGNIFICANCE: These findings expand the fundamental understanding of the role of mitochondria in the activation of MC. It also contributes to the rationale for the development of mitochondrial-targeted drugs for the treatment of allergic diseases.


Assuntos
Degranulação Celular , Mastócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Plastoquinona/análogos & derivados , Receptores de IgE/metabolismo , Animais , Regulação da Expressão Gênica , Mastócitos/imunologia , Mastócitos/metabolismo , Mastócitos/patologia , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Plastoquinona/farmacologia , Ratos , Receptores de IgE/genética
9.
Bioorg Chem ; 116: 105316, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509796

RESUMO

In the fight with the antimicrobial resistance, our continuous effort to find quinone analogs with higher inhibitory activity has previously led us to the promising Plastoquinone analogs. The 1,4-quinone moiety substituted with alkoxy substituent(s) plays an important role in the field of antimicrobial and anticancer drug discovery and development. Thus, an extensive series of 1,4-quinones, substituted in different positions with a variety of alkoxy substituents, has been designed, synthesized, and evaluated for their antimicrobial activity. Here, we describe the synthesis of brominated Plastoquinone analogs (BrPQ1-15) based on the dimethyl-1,4-quinone scaffold by employing two different paths. We also present here the in vitro antimicrobial activity of these analogs (BrPQ1-15) against a panel of pathogenic organisms. These studies resulted in several new selective antibacterial inhibitors and gave valuable insights into the structure-activity relationships. Among all the analogs studied, two analogs BrPQ1 with a methoxy substituent and BrPQ14 with a cyclic dioxy stand out as the most promising antibacterial molecules against Staphylococcus aureus and Staphylococcus epidermidis. Afterwards, two analogs were selected for a further investigation for biofilm evaluation. Finally, molecular docking studies for BrPQ1 and BrPQ14 with probable target S. aureus PNPase (5XEX) and predictive ADMET studies were also carried out.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Plastoquinona/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Relação Dose-Resposta a Droga , Halogenação , Testes de Sensibilidade Microbiana , Estrutura Molecular , Plastoquinona/síntese química , Plastoquinona/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
10.
Chem Biol Interact ; 349: 109673, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560069

RESUMO

2,3-Dimethyl-1,4-benzoquinones named as Plastoquinone (PQ) analogs have antiproliferative activity and are promising new members of molecules that can be used to cope with cancer. In an attempt to develop effective and potentially safe antiproliferative agents, previously reported twelve Plastoquinone analogs (PQ1-12) have been obtained to understand their antiproliferative profile. All PQ analogs have been selected by the National Cancer Institute (NCI) of Bethesda based on the NCI Developmental Therapeutics Program and tested against the panel of 60 cancer cell lines. Based on those studies, the cytotoxicity of the selected PQ analogs (PQ8, PQ9, PQ11, and PQ12) was determined using four breast cancer cell lines (MCF7, UACC-2087, MDA-MB-231, and MDA-MB-435) and a normal cell line (HaCaT). For better understanding, apoptosis induction, changes in cell proliferation, cell migration, and reactive oxygen species (ROS) generation were investigated for the selected PQ analog (PQ11) on MCF7 and UACC-2087 cell lines. According to the study results, PQ11 showed the most promising anticancer activity against MCF7 cell line through increased oxidative stress and apoptosis and suppression of cell proliferation. Based on the biological activity profile, we hypothesize that PQ11 could be a modulator of the cannabinoid 2 (CB2) receptor. Accordingly, we analyzed molecular level interaction of PQ11 with CB2 receptor through molecular docking simulation and it was also predicted to have a favorable ADMET profile. Overall, our findings suggest that integration of the N-phenylpiperazine moiety can be a good strategy for the structural optimization of PQ analogs as anticancer agents, especially in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Piperazinas/química , Plastoquinona/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Plastoquinona/química , Relação Estrutura-Atividade
11.
Biochemistry (Mosc) ; 86(3): 382-388, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33838637

RESUMO

Diseases of the cornea are a frequent cause of blindness worldwide. Keratoplasty is an efficient method for treating severely damaged cornea. The functional competence of corneal endothelial cells is crucial for successful grafting, which requires improving the media for the hypothermic cornea preservation, as well as developing the methods for the evaluation of the corneal functional properties. The transport of water and ions by the corneal endothelium is important for the viability and optic properties of the cornea. We studied the impact of SkQ1 on the equilibrium sodium concentration in the endothelial cells after hypothermic preservation of pig cornea at 4°C for 1, 5, and 10 days in standard Eusol-C solution. The intracellular sodium concentration in the endothelial cells was assayed using the fluorescent dye Sodium Green; the images were analyzed with the custom-designed CytoDynamics computer program. The concentrations of sodium in the pig corneal endothelium significantly increased after 10 days of hypothermic preservation, while addition of 1.0 nM SkQ1 to the preservation medium decreased the equilibrium concentration of intracellular sodium (at 37°C). After 10 days of hypothermic preservation, the permeability of the plasma membrane for sodium decreased in the control cells, but not in the cells preserved in the presence of 1 nM SkQ1. Therefore, SkQ1 increased the ability of endothelial cells to restore the intracellular sodium concentration, which makes SkQ1 a promising agent for facilitating retention of the functional competence of endothelial cells during cold preservation.


Assuntos
Endotélio Corneano/metabolismo , Hipotermia Induzida , Plastoquinona/análogos & derivados , Sódio/análise , Preservação de Tecido/métodos , Animais , Temperatura Baixa , Córnea/química , Córnea/efeitos dos fármacos , Córnea/metabolismo , Endotélio Corneano/química , Endotélio Corneano/efeitos dos fármacos , Plastoquinona/farmacologia , Sódio/metabolismo , Sus scrofa/metabolismo , Sus scrofa/fisiologia
12.
Exp Hematol ; 86: 67-77.e2, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32422231

RESUMO

There exists an urgent need for the development of new drugs for the treatment of lymphoid neoplasms. The aim of this study was to evaluate the cytotoxic effect of the marine plastoquinone 9'-hydroxysargaquinone (9'-HSQ), focusing on investigation of the mechanism by which it causes death in lymphoid neoplastic cells. This particular plastoquinone reduced the cell viability of different hematological tumor cell lines in a time-dependent and concentration-dependent manner. Intrinsic apoptosis occurred with time-dependent reduction of mitochondrial membrane potential (42.3 ± 1.1% of Daudi cells and 18.6 ± 5.6% of Jurkat cells maintained mitochondrial membrane integrity) and apoptosis-inducing factor release (Daudi: 133.3 ± 8.1%, Jurkat: 125.7 ± 6.9%). Extrinsic apoptosis also occurred, as reflected by increased FasR expression (Daudi: 139.5 ± 7.1%, Jurkat: 126.0 ± 1.0%). Decreases were observed in the expression of Ki-67 proliferation marker (Daudi: 67.5 ± 2.5%, Jurkat: 84.3 ± 3.8%), survivin (Daudi: 66.0 ± 9.9%, Jurkat: 63.1 ± 6.0%), and NF-κB (0.7 ± 0.04% in Jurkat cells). Finally, 9'-HSQ was cytotoxic to neoplastic cells from patients with different lymphoid neoplasms (IC50: 4.9 ± 0.6 to 34.2 ± 0.4 µmol/L). These results provide new information on the apoptotic mechanisms of 9'-HSQ and suggest that it might be a promising alternative for the treatment of lymphoid neoplasms.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Organismos Aquáticos/química , Neoplasias Hematológicas/tratamento farmacológico , Transtornos Linfoproliferativos/tratamento farmacológico , Phaeophyceae/química , Plastoquinona/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Células Jurkat , Células K562 , Transtornos Linfoproliferativos/metabolismo , Transtornos Linfoproliferativos/patologia , Plastoquinona/química
13.
Folia Microbiol (Praha) ; 65(5): 785-795, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32458315

RESUMO

Infectious diseases are the significant global health problem because of drug resistance to most classes of antimicrobials. Interest is growing in the development of new antimicrobials in pharmaceutical discovery. For that reason, the urgency for scientists to find and/or develop new important molecules is needed. Many natural active molecules that exhibit various biological activities have been isolated from the nature. For the present research, a new selected set of aminobenzoquinones, denoted as plastoquinone analogs (PQ1-24), was employed for their in vitro antimicrobial potential in a panel of seven bacterial strains (three Gram-positive and four Gram-negative bacteria) and three fungi. The results revealed PQ analogs with specific activity against bacteria including Staphylococcus epidermidis and pathogenic fungi, including Candida albicans. PQ8 containing methoxy group at the ortho position on the phenylamino moiety exhibited the highest growth inhibition against S. epidermidis with a minimum inhibitory concentration of 9.76 µg/mL. The antifungal profile of all PQ analogs indicated that five analogs (while PQ1, PQ8, PQ9, PQ11, and PQ18 were effective against Candida albicans, PQ1 and PQ18 were effective against Candida tropicalis) have potent antifungal activity. Selected analogs, PQ1 and PQ18, were studied for biofilm evaluation and time-kill kinetic study for better understanding.


Assuntos
Anti-Infecciosos/farmacologia , Candida albicans/efeitos dos fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Anti-Infecciosos/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Halogenação , Testes de Sensibilidade Microbiana , Estrutura Molecular , Plastoquinona/química , Staphylococcus epidermidis/crescimento & desenvolvimento , Relação Estrutura-Atividade
14.
Oxid Med Cell Longev ; 2020: 3631272, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104531

RESUMO

A new mitochondria-targeted probe MitoCLox was designed as a starting compound for a series of probes sensitive to cardiolipin (CL) peroxidation. Fluorescence microscopy reported selective accumulation of MitoCLox in mitochondria of diverse living cell cultures and its oxidation under stress conditions, particularly those known to cause a selective cardiolipin oxidation. Ratiometric fluorescence measurements using flow cytometry showed a remarkable dependence of the MitoCLox dynamic range on the oxidation of the sample. Specifically, MitoCLox oxidation was induced by low doses of hydrogen peroxide or organic hydroperoxide. The mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decyltriphenyl-phosphonium (SkQ1), which was shown earlier to selectively protect cardiolipin from oxidation, prevented hydrogen peroxide-induced MitoCLox oxidation in the cells. Concurrent tracing of MitoCLox oxidation and membrane potential changes in response to hydrogen peroxide addition showed that the oxidation of MitoCLox started without a delay and was complete during the first hour, whereas the membrane potential started to decay after 40 minutes of incubation. Hence, MitoCLox could be used for splitting the cell response to oxidative stress into separate steps. Application of MitoCLox revealed heterogeneity of the mitochondrial population; in living endothelial cells, a fraction of small, rounded mitochondria with an increased level of lipid peroxidation were detected near the nucleus. In addition, the MitoCLox staining revealed a specific fraction of cells with an increased level of oxidized lipids also in the culture of human myoblasts. The fraction of such cells increased in high-density cultures. These specific conditions correspond to the initiation of spontaneous myogenesis in vitro, which indicates that oxidation may precede the onset of myogenic differentiation. These data point to a possible participation of oxidized CL in cell signalling and differentiation.


Assuntos
Peroxidação de Lipídeos/fisiologia , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Animais , Cardiolipinas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia
15.
Oxid Med Cell Longev ; 2020: 8956504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104543

RESUMO

Benzalkonium chloride (BAC) is currently the most commonly used antimicrobial preservative in ophthalmic solutions, nasal sprays, and cosmetics. However, a large number of clinical and experimental investigations showed that the topical administration of BAC-containing eye drops could cause a variety of ocular surface changes, from ocular discomfort to potential risk for future glaucoma surgery. BAC-containing albuterol may increase the risk of albuterol-related systemic adverse effects. BAC, commonly present in personal care products, in cosmetic products can induce irritation and dose-dependent changes in the cell morphology. The cationic nature of BAC (it is a quaternary ammonium) suggests that one of the major targets of BAC in the cell may be mitochondria, the only intracellular compartment charged negatively. However, the influence of BAC on mitochondria has not been clearly understood. Here, the effects of BAC on energy parameters of rat liver mitochondria as well as on yeast cells were examined. BAC, being a "weaker" uncoupler, potently inhibited respiration in state 3, diminished the mitochondrial membrane potential, caused opening of the Ca2+/Pi-dependent pore, blocked ATP synthesis, and promoted H2O2 production by mitochondria. BAC triggered oxidative stress and mitochondrial fragmentation in yeast cells. BAC-induced oxidative stress in mitochondria and yeast cells was almost totally prevented by the mitochondria-targeted antioxidant SkQ1; the protective effect of SkQ1 on mitochondrial fragmentation was only partial. Collectively, these data showed that BAC acts adversely on cell bioenergetics (especially on ATP synthesis) and mitochondrial dynamics and that its prooxidant effect can be partially prevented by the mitochondria-targeted antioxidant SkQ1.


Assuntos
Compostos de Benzalcônio/farmacologia , Mitocôndrias Hepáticas/metabolismo , Animais , Antioxidantes/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
16.
Int J Mol Sci ; 21(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973128

RESUMO

Ocular inflammation contributes to the pathogenesis of blind-causing retinal degenerative diseases, such as age-related macular degeneration (AMD) or photic maculopathy. Here, we report on inflammatory mechanisms that are associated with retinal degeneration induced by bright visible light, which were revealed while using a rabbit model. Histologically and electrophysiologically noticeable degeneration of the retina is preceded and accompanied by oxidative stress and inflammation, as evidenced by granulocyte infiltration and edema in this tissue, as well as the upregulation of total protein, pro-inflammatory cytokines, and oxidative stress markers in aqueous humor (AH). Consistently, quantitative lipidomic studies of AH elucidated increase in the concentration of arachidonic (AA) and docosahexaenoic (DHA) acids and lyso-platelet activating factor (lyso-PAF), together with pronounced oxidative and inflammatory alterations in content of lipid mediators oxylipins. These alterations include long-term elevation of prostaglandins, which are synthesized from AA via cyclooxygenase-dependent pathways, as well as a short burst of linoleic acid derivatives that can be produced by both enzymatic and non-enzymatic free radical-dependent mechanisms. The upregulation of all oxylipins is inhibited by the premedication of the eyes while using mitochondria-targeted antioxidant SkQ1, whereas the accumulation of prostaglandins and lyso-PAF can be specifically suppressed by topical treatment with cyclooxygenase inhibitor Nepafenac. Interestingly, the most prominent antioxidant and anti-inflammatory benefits and overall retinal protective effects are achieved by simultaneous administrating of both drugs indicating their synergistic action. Taken together, these findings provide a rationale for using a combination of mitochondria-targeted antioxidant and cyclooxygenase inhibitor for the treatment of inflammatory components of retinal degenerative diseases.


Assuntos
Humor Aquoso/metabolismo , Inflamação/tratamento farmacológico , Luz/efeitos adversos , Retina/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/metabolismo , Animais , Antioxidantes/farmacologia , Ácido Araquidônico/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Edema/patologia , Inflamação/patologia , Peroxidação de Lipídeos , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Masculino , Mitocôndrias/metabolismo , Estresse Oxidativo , Oxilipinas/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Fator de Ativação de Plaquetas/análogos & derivados , Fator de Ativação de Plaquetas/metabolismo , Coelhos , Retina/efeitos dos fármacos , Retina/patologia , Retina/efeitos da radiação , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/patologia
17.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165664, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31926265

RESUMO

Neutrophils release neutrophil extracellular traps (NETs) in response to numerous pathogenic microbes as the last suicidal resource (NETosis) in the fight against infection. Apart from the host defense function, NETs play an essential role in the pathogenesis of various autoimmune and inflammatory diseases. Therefore, understanding the molecular mechanisms of NETosis is important for regulating aberrant NET release. The initiation of NETosis after the recognition of pathogens by specific receptors is mediated by an increase in intracellular Ca2+ concentration, therefore, the use of Ca2+ ionophore A23187 can be considered a semi-physiological model of NETosis. Induction of NETosis by various stimuli depends on reactive oxygen species (ROS) produced by NADPH oxidase, however, NETosis induced by Ca2+ ionophores was suggested to be mediated by ROS produced in mitochondria (mtROS). Using the mitochondria-targeted antioxidant SkQ1 and specific inhibitors of NADPH oxidase, we showed that both sources of ROS, mitochondria and NADPH oxidase, are involved in NETosis induced by A23187 in human neutrophils. In support of the critical role of mtROS, SkQ1-sensitive NETosis was demonstrated to be induced by A23187 in neutrophils from patients with chronic granulomatous disease (CGD). We assume that Ca2+-triggered mtROS production contributes to NETosis either directly (CGD neutrophils) or by stimulating NADPH oxidase. The opening of the mitochondrial permeability transition pore (mPTP) in neutrophils treated by A23187 was revealed using the electron transmission microscopy as a swelling of the mitochondrial matrix. Using specific inhibitors, we demonstrated that the mPTP is involved in mtROS production, NETosis, and the oxidative burst induced by A23187.


Assuntos
Armadilhas Extracelulares/metabolismo , Doença Granulomatosa Crônica/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , NADPH Oxidase 2/metabolismo , Neutrófilos/metabolismo , Explosão Respiratória/fisiologia , Adolescente , Calcimicina/farmacologia , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Células Cultivadas , Criança , Transporte de Elétrons , Sequestradores de Radicais Livres/farmacologia , Doença Granulomatosa Crônica/sangue , Voluntários Saudáveis , Humanos , Mutação com Perda de Função , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Poro de Transição de Permeabilidade Mitocondrial , NADPH Oxidase 2/antagonistas & inibidores , NADPH Oxidase 2/genética , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/ultraestrutura , Oxirredução/efeitos dos fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Cultura Primária de Células , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/efeitos dos fármacos
18.
Chem Biol Drug Des ; 95(3): 343-354, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31785034

RESUMO

Herein, we report the synthesis and cytotoxic effects of novel chlorinated plastoquinone analogs (ABQ1-17) against different leukemic cells. Compounds ABQ3, ABQ11, and ABQ12 demonstrated a pronounced antiproliferative effect against chronic myelogenous leukemia (CML) K562 cell line with IC50 values of 0.82 ± 0.07, 0.28 ± 0.03, and 0.98 ± 0.22 µM, respectively. Among them, ABQ11 showed approximately three times higher selectivity than imatinib on CML. ABQ11-treated CML cells induced significant apoptosis at low concentration. Inhibitory effect of ABQ11 against eight different tyrosine kinases, including ABL1, was investigated. ABQ11 inhibited ABL1 with IC50 value of 13.12 ± 1.71 µM, indicating that the moderate inhibition of ABL1 kinase is just an in-part mechanism of its outstanding cellular activity. Molecular docking of ABQ11 into ABL1 kinase ATP-binding pocket revealed the formation of some key interactions. Furthermore, DNA cleavage assay showed that ABQ11 strongly disintegrated DNA at 1 µM concentration in the presence of iron (II) complex system, assuming that the major mechanism for the anticancer effects of ABQ11 is DNA cleavage. In silico ADMET prediction revealed that ABQ11 is a drug-like small molecule with a favorable safety profile. Taken together, ABQ11 is a potential antiproliferative hit compound that exhibits unique cytotoxic activity distinct from imatinib.


Assuntos
Antineoplásicos/síntese química , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Plastoquinona/síntese química , Inibidores de Proteínas Quinases/síntese química , Proteínas Tirosina Quinases/antagonistas & inibidores , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clivagem do DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Halogenação , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/normas , Plastoquinona/metabolismo , Plastoquinona/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade
19.
Bioorg Chem ; 92: 103255, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31542717

RESUMO

In this paper, based on Plastoquinone (PQ) analogs possessing substituted aniline containing alkoxy group(s), new 2,3-dimethyl-5-amino-1,4-benzoquinones (PQ1-15) were designed and synthesized in either two steps or one-pot reaction. Specifically, the substituted amino moiety containing mono or poly alkoxy group(s) with various positions and groups were mainly explored to understand the structure-activity relationships for the cytotoxic activity against three human cancer cell lines (K562, Jurkat, and MT-2) and human peripheral blood mononuclear cells (PBMC). PQ2 was found to be most effective anticancer compound on K562 and Jurkat cell lines with IC50 values of 6.40 ±â€¯1.73 µM and 7.72 ±â€¯1.49 µM, respectively. Interestingly, the compound was non-cytotoxic to normal PBMC and also MT-2 cancer cells. PQ2 which showed significant selectivity in MTT assay was chosen for apoptotic/necrotic evaluation and results exhibited that it induced apoptosis in K562 cell line after 6 h of treatment. PQ2 showed anti-Abelson kinase 1 (Abl1) activity with different inhibitory profile than Imatinib in the panel of eight kinases. The binding mode of PQ2 into Abl ATP binding pocket was predicted in silico showing the formation of some key interactions. In addition, PQ2 induced Bcr-Abl1 mediated ERK pathway in human chronic myelogenous leukemia (CML) cells. Furthermore, DNA-cleaving capability of PQ2 was clearly enhanced by iron (II) complex system. Afterward, a further in silico ADMET prediction revealed that PQ2 possesses desirable drug-like properties and favorable safety profile. These results indicated that PQ2 has multiple mechanism of action and two of them are anti-Bcr-Abl1 and DNA-cleaving activity. This study suggests that Plastoquinone analogs could be potential candidates for multi-target anticancer therapy.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Plastoquinona/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Plastoquinona/síntese química , Plastoquinona/química , Relação Estrutura-Atividade
20.
Oxid Med Cell Longev ; 2019: 3984906, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396299

RESUMO

Alzheimer's disease (AD) is the most common type of dementia, with increasing prevalence and no disease-modifying treatment available yet. There is increasing evidence-from interventions targeting mitochondria-that may shed some light on new strategies for the treatment of AD. Previously, using senescence-accelerated OXYS rats that simulate key characteristics of sporadic AD, we have shown that treatment with mitochondria-targeted antioxidant SkQ1 (plastoquinonyl-decyltriphenylphosphonium) from age 12 to 18 months (that is, during active progression of AD-like pathology)-via improvement of mitochondrial function-prevented the neuronal loss and synaptic damage, enhanced neurotrophic supply, and decreased amyloid-ß 1-42 protein levels and tau hyperphosphorylation in the hippocampus. In the present study, we continued to explore the mechanisms of the anti-AD effects of SkQ1 in an OXYS rat model through deep RNA sequencing (RNA-seq) and focused upon the cell-specific gene expression alterations in the hippocampus. According to RNA-seq results, OXYS rats had 1,159 differentially expressed genes (DEGs) relative to Wistar rats (control), and 6-month treatment with SkQ1 decreased their number twofold. We found that 10.5% of all DEGs in untreated (control) OXYS rats were associated with mitochondrial function, whereas SkQ1 eliminated differences in the expression of 76% of DEGs (93 from 122 genes). Using transcriptome approaches, we found that the anti-AD effects of SkQ1 are associated with an improvement of the activity of many signaling pathways and intracellular processes. SkQ1 changed the expression of genes in neuronal, glial, and endothelial cells, and these genes are related to mitochondrial function, neurotrophic and synaptic activity, calcium processes, immune and cerebrovascular systems, catabolism, degradation, and apoptosis. Thus, RNA-seq analysis yields a detailed picture of transcriptional changes during the development of AD-like pathology and can point to the molecular and genetic mechanisms of action of the agents (including SkQ1) holding promise for the prevention and treatment of AD.


Assuntos
Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Plastoquinona/análogos & derivados , Transcriptoma/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Redes Reguladoras de Genes/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Mitocôndrias/metabolismo , Plastoquinona/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA